THE LAST GLACIAL MAXIMUM OF SVALBARD AND THE BARENTS SEA AREA: ICE SHEET EXTENT AND CONFIGURATION

https://doi.org/10.1016/S0277-3791(97)00066-8Get rights and content

Abstract

The timing, extent and configuration of the Late Weichselian Barents ice sheet has been debated for several decades. This debate has arisen largely because of the limited or conflicting field evidence on which most models have been based. In particular, reconstruction of the marine parts of the former Barents ice sheet has been controversial. This paper aims to review the geological observations and interpretations regarding the size and timing of the Late Weichselian ice sheet, combined with numerical modelling of its formation in order to produce a reconstruction of ice sheet extent and behaviour. Sub-glacial till with overlying glacimarine deposits dated to the Late Weichselian is found over most of the Barents Sea floor and the continental shelf west of Svalbard. Glacially induced debris flow deposits on the large Bjønøya and Isfjorden trough mouth fans strongly support the idea of ice sheet extension to the shelf edge during maximum glaciation. Isobase maps show a centre of post-glacial uplift in the north-central Barents Sea, and glaciological and isostatic modelling suggest that the ice sheet was 2000–3000 m thick in this area. The ice sheet was confluent with ice over the Kara Sea, but the interaction between the Barents and Kara ice sheets is not yet fully understood. The deglaciation of the Barents ice sheet started ca 15 ka, probably by calving within the deeper troughs. By 12 ka, most of the central Barents Sea was ice free, and ice remained over the Svalbard, Franz Josef Land and Novaja Zemlya archipelagos and adjacent shallow shelf areas. The coasts and fjords of these islands were ice free by 10 ka.

References (0)

Cited by (333)

View all citing articles on Scopus
View full text